Course Description Form

1. Course Name:
Topology I
2. Course Code:
MATH 415
3. Semester / Year:
First /2023-2024
4. Description Preparation Date:
23-3-2024
5. Available Attendance Forms:
Attendance lectures in the classroom
6. Number of Credit Hours (Total) / Number of Units (Total)
60 hours
7. Course administrator's name (mention all, if more than one name)
Name: Asst. Prof. Dr. Fadhel Subhi Fadhel
Email: fadhel.subhi@nahrainuniv.edu.iq

		student, which is supported by learning strategies. Teaching strategies include a set of organized plans and methods followed by the subject teacher in order to guide students towards achieving learning goals, including cognitive goals for theoretical subjects and skill goals for proving theorems in a mathematical manner through sequential and ordered steps, and emotional and value goals through sensory perception of the operative theorems and results and then their proofs. And how to deal with it. This is done through specific teaching and learning methods in order for the student to acquire general and qualifying skills that are transferable.			
10. Course Structure					
Week	Hours	Required Learning Outcomes	Unit or subject name	Learning method	Evaluation method
1	4	Introducing topological spaces and its related definitions, as well as, basic definitions and elementary examples	Topological spaces	Attendance interactive lectures	Ask questions and give assignments
2	4	Give well known examples definitions in topology (indiscrete, discrete, usual and cofinite topologies)	Examples of topological spaces	Attendance interactive lectures	Ask questions and give assignments
3	4	Studying the derived sets and closure of a set	Topological spaces	Attendance interactive lectures	Ask questions and give assignments
4	4	Studying the interior, exterior and the boundary points	Topological spaces	Attendance interactive lectures	Ask questions and give some homework's
5	4	Basis and local bases	Topological spaces	Attendance interactive lectures	Ask questions and give assignments
6	4	Introducing dense and nowhere dense spaces, separated sets	Topological spaces with special properties	Attendance interactive lectures	Ask questions and give assignments
7	4	Introducing connected, disconnected and separated sets	Topological spaces with special properties	Attendance interactive lectures	Ask questions and give assignments
8	4	Continuous, open and closed mappings	Mappings	Attendance interactive lectures	Ask questions and give assignments

9	4	More concepts related continuous, open and closed mappings	Mappings	Attendance interactive lectures	Ask questions, give assignments, and make a 1st attendance mid exam
10	4	Homeomorphisms	Mappings	Attendance interactive lectures	Ask questions and give assignments
11	4	Topological properties and hereditary	Mappings	Attendance interactive lectures	Ask questions and give assignments
12	4	Product Topological Spaces	Mappings	Attendance interactive lectures	Ask questions and give assignments
13	4	Definitions and examples of compact sets, as well as some theoretical results	Compactness	Attendance interactive lectures	Ask questions, give assignments, and make a 2 nd attendance mid exam
14	4	Compact sets (further results)	Compactness	Attendance interactive lectures	Ask questions and give assignments
15	4	Stating and proving the intermediate value theorem	Intermediate value theorem	Attendance interactive lectures	Ask questions and give assignments
11. Course Evaluation					
Distributing the score out of 100 according to the tasks assigned to the student such as daily preparation, daily oral, monthly, or written exams, reports ... etc. 30% monthly written exams 10% daily and oral exams, homework's, and class activities 60% written final exam					
12. Learning and Teaching Resources					
Required textbooks (curricular book any)			1. Introduction to General Topology, by: K. Joshi 2. Theory and problems of general topology, Seymour Lipchitz, Schuam's series, 1965		
Main references (sources)			1-Lecture Notes on Topology, by: John Rognes, 2018. 2-General Topology, by: Tom Leinster, 2014		
Recommended books and referen (scientific journals, reports...)			1-Lecture Notes- General Topology, by: ZiadKhalil, 2022.General Topology, by: Jesper M. M $\phi 1$ ler.		
Electronic References, Websites			1-lecturervv3JNSPKeEU		

